Research


Recent Research Found a Surprising Link Between Coffee and Gut Health
Coffee is more than just a daily habit—it may play an active role in shaping a healthier gut. A recent large-scale, multi-cohort study has uncovered a strong and reproducible association between coffee consumption and the enrichment of Lawsonibacter asaccharolyticus, a gut microbe linked to anti-inflammatory effects. Using integrated multi-omic data and in vitro experiments, the researchers identified quinic acid—found in coffee—as a potential driver of this microbial response. This study offers compelling evidence of a direct biochemical connection between specific dietary components and beneficial shifts in the gut microbiome.


How Dietary Fiber May Help Disarm Cancer-causing Gut Bacteria
A groundbreaking new study uncovers how the food we eat can interact with the bacteria living in our gut - and potentially help trigger colon cancer. Scientists used a mouse model to explore the combined effects of diet, microbiome composition, and genetics on colorectal cancer risk. What they found is both sobering and hopeful.

Gut Dysbiosis Uncovered: How Gut Diversity & Gut Barrier Function Play a Crucial Role in Maintaining Your Health
The human gut microbiota plays a pivotal role in maintaining overall health. When the composition and function of this microbial ecosystem become imbalanced, we talk about gut dysbiosis. This imbalance contributes to a dysregulated gut-immune axis, referring to impaired communication and feedback loop between the gut microbiota, intestinal barrier, and the immune system¹.

The Role of Binding Proteins in Gut Health
Gut health is essential for overall well-being, yet lifestyle habits, environmental factors such as diet, and medicines contribute to an increasing prevalence of gut dysbiosis and a compromised gut lining. These disruptions can have significant health implications, ranging from acute digestive discomfort to long-lasting challenges and broader systemic effects1. In fact, the U.S. microbiome has lost over 30% of its bacterial diversity — mainly due to antibiotics and poor diet2, 3.