Your gateway to Binding Protein science

Bringing together leading research on Binding Proteins, gut microbiota, and nutrition

How they work together to strengthen the gut and for staying healthy - proactively.

Research Areas

Binding Proteins

Learn about Binding Proteins, a new class of food and dietary ingredient; fermented IgG-derived fragments, developed for precision and gut resilience.

Gut Microbiota and Nutrition

Stay updated and explore the dynamic relationship between nutrition and gut microbiota with the latest scientific research, expert insights, and emerging trends.

Gut Health Challenges

Delve into the factors that disrupt gut health, from enterotoxins to microbial imbalances, along with the consequences and potential solutions for gut dysbiosis.

A Longevity Secret from the Centenerian Gut: Mesaconic Acid

In a remote corner of southern China lies Jiaoling, a place famous for its extraordinary number of centenarians. Curious about what keeps these people thriving well past 100, scientists turned their attention to an often overlooked yet crucial part of the body: the gut. In a 2025 study, Wu and collegues collected samples from 224 residents spanning ages 20 to 110 and found a striking pattern. The centenarians carried a far richer and more balanced community of gut microbes than younger people, with high levels of helpful species like Lactobacillus, Akkermansia, and Christensenella. A rich microbiome is known to be more stable and better at fending off harmful bacteria, and the centenarians’ blood also brimmed with antioxidant compounds that help protect cells from damage over time, consistent with an anti-aging profile.

Recent Research Found a Surprising Link Between Coffee and Gut Health

Coffee is more than just a daily habit—it may play an active role in shaping a healthier gut. A recent large-scale, multi-cohort study has uncovered a strong and reproducible association between coffee consumption and the enrichment of Lawsonibacter asaccharolyticus, a gut microbe linked to anti-inflammatory effects. Using integrated multi-omic data and in vitro experiments, the researchers identified quinic acid—found in coffee—as a potential driver of this microbial response. This study offers compelling evidence of a direct biochemical connection between specific dietary components and beneficial shifts in the gut microbiome.

The Role of Binding Proteins in Gut Health

The Role of Binding Proteins in Gut Health

Gut health is essential for overall well-being, yet lifestyle habits, environmental factors such as diet, and medicines contribute to an increasing prevalence of gut dysbiosis and a compromised gut lining. These disruptions can have significant health implications, ranging from acute digestive discomfort to long-lasting challenges and broader systemic effects1. In fact, the U.S. microbiome has lost over 30% of its bacterial diversity — mainly due to antibiotics and poor diet2, 3.

Gut Dysbiosis Uncovered: How Gut Diversity & Gut Barrier Function Play a Crucial Role in Maintaining Your Health 

Gut Dysbiosis Uncovered: How Gut Diversity & Gut Barrier Function Play a Crucial Role in Maintaining Your Health 

The human gut microbiota plays a pivotal role in maintaining overall health. When the composition and function of this microbial ecosystem become imbalanced, we talk about gut dysbiosis. This imbalance contributes to a dysregulated gut-immune axis, referring to impaired communication and feedback loop between the gut microbiota, intestinal barrier, and the immune system¹.

Protecting the Piglet Gut Microbiota Against ETEC-Mediated Post-Weaning Diarrhoea Using Specific Binding Proteins

Post-weaning diarrhoea (PWD) in piglets presents a widespread problem in industrial pig production and is often caused by enterotoxigenic E. coli (ETEC) strains. Current solutions, such as antibiotics and medicinal zinc oxide, are unsustainable and are increasingly being prohibited, resulting in a dire need for novel solutions. Thus, in this study, we propose and evaluate a protein-based feed additive, comprising two bivalent heavy chain variable domain ($V_{HH}$) constructs ($V_{HH}$-(GGGGS)$_3$-$V_{HH}$, BL1.2 and BL2.2) as an alternative solution to manage PWD. We demonstrate in vitro that these constructs bind to ETEC toxins and fimbriae, whilst they do no affect bacterial growth rate. Furthermore, in a pig study, we show that oral administration of these constructs after ETEC challenge reduced ETEC proliferation when compared to challenged control piglets (1-2 $\log_{10}$ units difference in gene copies and bacterial count/g faeces across day 2–7) and resulted in week 1 enrichment of three bacterial families (Prevotellaceae (estimate: 1.12 $\pm$ 0.25, $q$ = 0.0054), Lactobacillaceae (estimate: 2.86 $\pm$ 0.52, $q$ = 0.0012), and Ruminococcaceae (estimate: 0.66 $\pm$ 0.18, $q$ = 0.049)) within the gut microbiota that appeared later in challenged control piglets, thus pointing to an earlier transition towards a more mature gut microbiota. These data suggest that such $V_{HH}$ constructs may find utility in industrial pig production as a feed additive for tackling ETEC and reducing the risk of PWD in piglet populations.

Contribute to the Hub

Be part of a growing knowledge community.

By sharing your research, you help inform peers, spark collaboration, and strengthen the collective understanding of gut health.

Please include a link in the message field. We’ll review your submission and follow up shortly.

We’d love to hear from you!

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.